When does defection pay?
The stability of institutional arrangements in clusters

K. Press

DRUID Summer Conference
Knowledge, Innovation and Competitiveness: Dynamics of Firms, Networks, Regions and Institutions
June 18-20th, 2006
Copenhagen, DK
Overview

- Introduction: Clusters, local culture, and change
- The model: Method, setup, and dynamics
- Results: Sustainable and beneficial defection
- Discussion: On the stability of local cultures
Clusters, agglomeration externalities and local culture

The nature of clusters
- Externalities (increase competitiveness)
- Local culture (dilemma situations)
Clusters, agglomeration externalities and local culture

- The nature of clusters
 - Externalities (increase competitiveness)
 - Local culture (dilemma situations)

- The stability of institutional arrangements in clusters
 - Prominent notion of collective local culture supported by joint observation and punishment
 - Enforcability (defection)
 - Adjustability (change)
Clusters, agglomeration externalities and local culture

- The nature of clusters
 - Externalities (increase competitiveness)
 - Local culture (dilemma situations)

- The stability of institutional arrangements in clusters
 - Prominent notion of collective local culture supported by joint observation and punishment
 - Enforcability (defection)
 - Adjustability (change)

- Investigation of sustainability of defection and its benefits in cluster adjustment to change
Modelling defection and cluster adjustment

Agent-based simulation model using the N/K methodology

- Cluster represented by production process
 - Different degrees of interdependence: Low, medium, high
 - Divided between (groups of) firms in the cluster
 - Interdependence within and between firms (agglomeration externalities)
Modelling defection and cluster adjustment

Agent-based simulation model using the N/K methodology

- Cluster represented by production process
 - Different degrees of interdependence: Low, medium, high
 - Divided between (groups of) firms in the cluster
 - Interdependence within and between firms (agglomeration externalities)

- Environment change affects cluster success (fitness)
 - Extent of change (shock/ disturbance)
 - Speed of change (slow/ fast)
Modelling defection and cluster adjustment

Agent-based simulation model using the N/K methodology

- Cluster represented by production process
 - Different degrees of interdependence: Low, medium, high
 - Divided between (groups of) firms in the cluster
 - Interdependence within and between firms (agglomeration externalities)

- Environment change affects cluster success (fitness)
 - Extent of change (shock/disturbance)
 - Speed of change (slow/fast)

- Defection and adjustment
 - Defecting agents behave egoistically (own interest)
 - Co-operating agents behave collectively (cluster interest)
Defection and cluster adjustment

- Egoists defecting from a collective local culture propose new solutions faster but their suggestions are inferior to other groups and the cluster as a whole.

- Sustainable egoism: Cases of egoism where the fitness of altruistic groups does not go below that obtainable in the ”all egoists” scenario.

- Beneficial egoism: Cases where clusters with egoists perform better in adjustment to environmental changes than the benchmark case of ”all altruists”.

Results: Adjustment in shock environments

- Similar performance of benchmark cases all altruists/all egoists
- Egoistic group never sustainable
- Limited amount of sustainable egoism in production processes with medium and high interdependence
- Egoists harm their group as interdependence grows
Results: Adjustment in disturbance environments

- Very different performance of benchmark cases all altruists/all egoists
- Egoistic group never sustainable
- Sustainable and beneficial egoism in production processes with low, medium and high interdependence - especially for fast disturbances
- Egoists do not harm their group as interdependence grows
Results summary: Sustainable and beneficial defection

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast shocks</td>
<td>None</td>
<td>1 or 2 Agents</td>
<td>3 Agents</td>
</tr>
<tr>
<td>Slow shocks</td>
<td>None</td>
<td>1 or 2 Agents</td>
<td>3 Agents</td>
</tr>
<tr>
<td>Fast disturbance</td>
<td>1-4 Agents</td>
<td>2-3 Agents</td>
<td>1,3,4 Agents</td>
</tr>
<tr>
<td>Slow disturbance</td>
<td>1-4 Agents</td>
<td>1,3,4 Agents</td>
<td>1-4 Agents</td>
</tr>
</tbody>
</table>

(Sustainable defection/ **Beneficial defection**)
The stability of institutional arrangements

- Egoistic group never sustainable (PD payoff structure)
- Mixed agent groups are sustainable and at times beneficial (especially when change is fast)
- Egoism (defection) does not always pay for the group
- Cluster’s local culture more stable than expected:
 - Some defection (egoism) is sustainable
 - In presence of externalities, defection pays less for the originator