printlogo
ETH Zuerich - Homepage
print   

Paper: ETH-RC-14-005

Title: Hierarchical maximum likelihood parameter estimation for cumulative prospect theory: Improving the reliability of individual risk parameter estimates

Authors: Ryan O. Murphy *, Robert H.W. ten Brincke


Abstract:

Individual risk preferences can be identified by using decision models with tuned parameters that maximally fit a set of risky choices made by a decision maker. A goal of this model fitting procedure is to isolate parameters that correspond to stable risk preferences. These preferences can be modeled as an individual difference, indicating a particular decision maker's tastes and willingness to tolerate risk. Using hierarchical statistical methods we show significant improvements in the reliability of individual risk preference parameters over other common estimation methods. This hierarchal procedure uses population level information (in addition to an individual's choices) to break ties (or near-ties) in the fit quality for sets of possible risk preference parameters. By breaking these statistical ``ties'' in a sensible way, researchers can avoid overfitting choice data and thus better measure individual differences in people's risk preferences.


Keywords: Prospect theory, Risk preference, Decision making under risk, Hierarchical parameter estimation, Maximum likelihood

Manuscript status:

JEL codes: D81, D03
PACS numbers:



Local copy of the paper: ETH-RC-14-005.pdf


Submission date: 16-4-2014


Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information